
ecent articles in RISC User have looked at
the subjects of task windows (6:6) and
PipeFS (6:8). This month�s Wimp Topics

will bring these two useful features of RISC OS
3 together to show how they can be used to
provide a handy method of debugging Basic
Wimp programs. Information can be sent from a
program under development, while it is running,
to a pipe file and thence to a second program
running in a task window, which displays the
information on the screen. As anyone who has
ever written a multi-tasking program knows only
too well, debugging can be an enormous
problem. When something goes wrong on the
Desktop, you can�t just stop everything and
examine the state of your variables. And as for
tracing the progress of your program using
Basic�s TRACE command, you might as well
forget it since in a multi-tasking environment
there is nowhere for the output to appear.

Enter the task window. As explained in Using
the RISC OS 3 Task Window (RISC User 6:6),
it is possible to create a Basic environment on
the Desktop which multi-tasks with other
applications. Couple this with the facility to use
PipeFS to transfer data from one application to
another (see PipeFS and Filer_Run, RISC User
6:8), and you have all the tools you need to
construct a versatile debugging system. You
can print out variable values in the task window,
for example, or even run a redirected trace (i.e.
display the line numbers currently being
executed) using the extended TRACE
command in the RISC OS 3 version of Basic.
This provides the additional syntax:

TRACE TO <string>
which directs the trace to a stream defined in
the parameter string. This could be a file, a
device such as �Printer:� (which would give a

running printout of the trace), or most usefully
for our purposes, a pipe. If this pipe is then read
by a second program running in a task window,
the trace output will appear on the screen while
the main program is running.
Once a stream has been opened in this way, all
trace output will be redirected to that stream.
TRACE CLOSE should be used to close the
stream when you have finished with it, while
TRACE used as a function returns the handle of
the stream.

DEBUGGING
First of all we need a short program running in a
task window, which can take and display any
output sent to the pipe. This is easily achieved
by opening a task window (by pressing Ctrl-
F12), and running the following program:
10 file%=OPENIN"Pipe:$.DebugFile"
20 IF file%=0 PRINT "Error - Pipefile
doesn�t exist":END
30 WHILE NOT EOF#file%
40 PRINT GET$#file%
50 ENDWHILE
60 CLOSE#file%
70 PRINT "Pipefile closed"
This program must run continuously in the task
window while you are debugging the main
program. The process of opening the task
window and running the debugging program
can also be automated, as will be described
later.

Now we need to arrange for the program we are
debugging to send the required output to the
pipe. The pipe file can be opened during the
initialisation procedure of the task under
scrutiny. If you are going to use the pipe for
trace output, you should open it as follows:

TRACE TO "Pipe:$.DebugFile"
The filename can of course be anything you
choose, but it must match the filename which is
being opened in the first line of the debug
program above. If you open the pipe file in this
way, any output from the TRACE command, for
example following a TRACE ON at some point
in the program, will be displayed in the task
window. However, you can also output any
other data to the task window provided it is in
ASCII format, by using BPUT# to write to the
stream you have opened, as in the following
examples:

RISC User August/September 199330

W imp Topics -
Debugging with the

Alan Wrigley describes some debugging
techniques with the help of routines by

R

BPUT#TRACE,"About to call Wimp_Poll"
BPUT#TRACE,"var%="+STR$var%

The first example will result in a string being
printed in the task window indicating which
point in the program has been reached, while
the second example prints a variable name (in
this case var%) together with its value.

If you are not using trace output, you can simply
open the pipe file with:

file%=OPENOUT"Pipe:$.DebugFile"
and write to it with:

BPUT#file%,<string>

ADDING THE DEBUG FACILITY TO
YOUR OWN PROGRAMS
I mentioned earlier that it is possible to
automate the process of opening the task
window debugger. First of all, type in the debug
program given earlier and save a copy of it as
Debug inside the application directory of the
program to be debugged. Create an Obey file
called !RunDebug with the following lines:

WimpSlot -min 32K -max 32K
Run <Obey$Dir>.Debug

and save it to the same directory. Now add a
new procedure to your main program called
PROCinitdebug, and call it immediately after the
main initialisation procedure (altering the line
numbering to suit and also the application name
in line 1030 if necessary):
1000 DEF PROCinitdebug
1010 TRACE TO "Pipe:$.DebugFile"
1020 file%=TRACE
1030 BPUT#file%,"Traced output from MyA
pp"
1040 BPUT#file%,""
1050 SYS "OS_ReadVarVal","Obey$Dir",blo
ck%,255 ,0,3 TO ,,len%
1060 block%?len%=13:path$=$block%
1070 name$=CHR$34+"Debug output"+CHR$34
1080 com$=CHR$34+"Obey "+path$+".!RunDe
bug"+CHR$34
1090 OSCLI("WimpTask TaskWindow "+com$+
" -name "+name$+" -display -quit")
1100 ENDPROC
The procedure assumes you have already
dimensioned a block of at least 255 bytes as
block%.

Having done this, any TRACE ON command
will direct trace output to the task window, and

any strings sent to file% using BPUT# will also
appear in the task window. When you have
finished with the debugger (for example when
your application is about to quit, or when you
are reporting a fatal error), you should issue a
TRACE CLOSE statement.

TRACE REVISITED
It is worth elaborating a little on the TRACE
command, since many newcomers to
programming may not have fully explored its
usefulness. We have seen above how to send
the traced output to a file (and thence to a task
window for immediate display). The command
itself has several forms. TRACE ON switches
on simple line number tracing, but you can also
use the form TRACE PROC. This will instead
display the names of procedures as they are
called within the program. To turn any kind of
trace off, just use TRACE OFF. The trace can
be switched on or off at any point in your
program, so you can easily isolate the section
that you want to study. Bear in mind when you
are tracing line numbers that lines which don�t
perform any actual processing (e.g. DEF
PROC, ENDPROC, REPEAT, UNTIL etc.) are
not shown.

Even more valuable in many situations is the
ability effectively to single-step your Basic
program. By adding the keyword STEP after
TRACE, for example:

TRACE STEP ON
the program waits for a key to be pressed
before continuing execution after each trace
output item is displayed. However, you should
think carefully before using this in a general
way with a multi-tasking program, as it will
almost certainly affect the whole operation of
the Desktop. Multi-tasking depends on well-
behaved applications passing control back to
Wimp_Poll as soon as possible; if your
application has to wait for several keypresses
before it gets back to its poll loop, you will have
difficulty moving windows around or accessing
menus, for example. It is better to use the STEP
facility within procedures to trace a route
through a single operation, and turn the trace
off again at the end of the procedure.

OTHER DEBUGGING

RISC User August/September 1993 31

Fe
at
ur
e

